Icelandic Met Office

Landslide monitoring system in Iceland

Harpa Grímsdóttir Jón Kristinn Helgason NVE, Oslo, October 26 2016

History

- Avalanches and landslides have caused extensive damages and loss of human lives in Iceland
- Avalanches are responsible for a greater number of deaths than landslides
- Avalanches have caused bigger accidents than landslides with higher number of casualties in single events
- The difference is probably smaller in terms of economical losses

Avalanche accidents in 1995

In 1995 34 people lost their lives in two avalanche disasters in the Westfjords of Iceland

- ▶14 in Súðavík in January
- ▶20 in Flateyri in October

The year 1995 became a turning point for avalanche work in Iceland and landslides as well

"Ofanflóð" is a term that includes both avalanches and landslides

After 1995

After 1995, new hazard mapping criteria was developed as well as new methods.

- Hazard maps are made for "ofanflóð" (landslides and avalanches)
 Municipalities that have red zones within urban areas are required to take action
- Buy living houses or defend them permanently
- The monitoring system was reorganised
- The national avalanche and landslide fund was strengthened
- ▶Pays for 90% of defence structures, hazard mapping and some research

Monitoring role of IMO

- The Icelandic Meteorological Office (IMO) has the overall responsibility of monitoring natural hazards in Iceland
- For avalanches and landslides IMO has a special role of monitoring settlements
- ▶ For avalanches, IMO orders evacuation of houses during periods of high danger
- ▶ For landslides, IMO advises local authorities and civil protection about evacuations and other actions

Monitoring system at IMO

Landslide and avalanche monitoring shifts

▶7 people in three different offices of IMO: Ísafjörður, Akureyri, Reykjavík

▲One week on duty

▲More people on duty when the danger rises

>20 snow observers around the country

▲Also help with evaluation of landslide risk

Monitor individual paths

Good cooperation with national and local civil authorities

Daily meetings with meteorologists and natural hazard specialists on duty

▲Civil authorities included during periods of increased danger

Warnings and dissemination

Focus on settlements

- Uncertainty Phase
- ►Alert Phase
 - ▲Evacuation of houses
- Local knowledge is important

In recent years more emphasis has been put on regional warnings during heavy rain and/or runoff events

▶ Floods and landslides

▶ Press releases and banner on the front page of IMO's website: vedur.is

▲More details on the hydrology part of the web site

A color coded system for displaying regional warnings will be put to use this winter for weather, floods and landslides. Other types of natural hazards added later.

Tue 25 Oct

3

ce

Fog

Data for monitoring

Central national database for landslides

Weather forecast

▶Harmonie NWP model

▲ Precipitation, temperature, wind speed and direction

ARunoff output (accumulated rain + snowmelt)

Weather data

- Manual observations
- Automatic weather stations
 - ▲ Precipitation
 - **▲**Temperature
 - ▲Snow depth and snow temperature
 - ▲Wind speed and direction

Discharge values

Recorded landslides in Iceland

Landslides in Iceland

Landslides in Iceland by months

From 1900 until 2011

14

Precipitation measurements

Runoff map

SM4 sensors Snow and air temperature up in mountains

Traðargil uppi

°C

07:01 fim. 08/02/2007

SM4 sensors

Traðargil uppi

10:43 fös. 23/03/2007

Threshold levels for precipitation

Threshold levels for precipitation

- Based on NGI values (Sanders 1995)
- Proportion of average annual precipitation for each location
 - ▲Big difference between areas
 - ▲Terrain in balance with the local climate

Threshold values for 24 hour rain

Icelandic Met

Office

Focus areas

Special attention is given to areas where movement of bedrock or loose material has been spotted

- •Observation by snow observer or other local contact persons
- Manual measurement of movement
- Fixed points for accurate GPS measurements
- Satellite data for detection of areas where movements are occurring (inSAR)
- Identification of areas with permafrost
 - ▲Terrain characteristics
 - ▲Ground penetrating radar?

Location of fixed GPS points within the area

Veðurstofa

Íslands

Veðurstofa Íslands

Eskifjörður

Hreyfingar í lausum jarðlögum Tímabil: 08.11.16 - 08.07.16

Skýringar

HST-1 ↓ GPS mælistaðir (fastpunktar)

H1 • Stikumælistaðir

Kvarði: 1:4.000

Hreyfingar í hlíðinni ofan við Högnastaði(H) og Engjabakka(E)

Láréttar hreyfing í cm

7. Júlí 2016