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Overview of natural hazards in Piemonte

In 5o years floods and landslides caused 256 deads, 160 wounded and about 28,0000 homeless in Piemonte. In an area characterized by a
delicate water balance - mountains occupy 45% area, and there is one calamitous event every 18 months on average — urbanized surface
increased by 74% between 1960 and 2009.

In Italy, the province of Torino is second only to the province of Naples for the population living in areas with high landslide risk. A critical
framework that involves 87% of municipalities and 12.7% of residents: these values highlight the importance of an enhanced regional warning
system operating in Piemonte.

From 1800 to 2013 Piemonte was hit by about 115 flood/landslide events — one event every 18-20 months. 12.2% of Piemonte territory is
classified as affected by high geo-hydrological risk.

Victims (from 1963 to 2012)

195 victims for landslides — 4986 homeless

129 dead

127 dead

[Source: CNR-IRPI; Arpa Piemonte]



Most danderous slope phenomena

=

Shallow landslides (Varnes, 1978) are considered extremely dangerous, T R
despite their relatively low volumes (generally <1000 m3), due to: the high = o SN ¥y
velocities (> 5 m/s - Cruden and Varnes, 1996); the rapid evolution; the
capacity of propagation even in presence of obstacles; the disposition to the
combination of the scars and to the coalescence of the mobilized soil; the
high density of slides per unit area of terrain in a single rainfall event.

Shallow landslides are responsible for 50% of the casualties caused by
landslides in the last 100 years in Piedmont region.

Debris flows are rapid or very rapid sediment water mixtures flows, with
high solid concentration (Jakob and Hungr 2005) occurring in the small
alpine catchments. They frequently occur and they often are characterized
by very high magnitude.

Debris flows are responsible for 36% of casualties in the Italian alpine
regions in the last century.




The obvious forecasting questions...

Where?

(...also called “predisposing factors"”)

&
When?

(...also called “triggering factors"”)




Shallow landslide Early Warning System

S.M.ARL.

Shallow landslides Movements Announced through Rainfall Thresholds

SMART is an empirical model based on the identification of rainfall (water)
thresholds which constitute the quantitative indicator of the induced hazard. It
works by the statistical relationship between causes and effects.



Shallow landslide EWS: where?
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Shallow landslide EWS: where?
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Shallow landslide EWS: where?

The approach is
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Shallﬂandslide EWS:Where?

PPl e
Shallow lands Zonation from correlation of Resulting susceptibility map (probability
based on about 35,000 landslides territorial parameters and SL density of wide SL event occurrence)




Shallow landslide EWS: When?

Recorded landslides (500 having info on triggering time) and related critical rainfall are lumped into a single value of critical rainfall, calculated
as the mean duration and mean cumulative rainfall. This value is used to represent the whole wide landslide event. Following this simple
procedure, each marker in the /-d plot is representative of all the landslides triggered during a single rainfall event (*Pragmatic thresholds”

Tiranti and Rabuffetti, 2010). The general expression of the rainfall threshold is:

\\ /)

where “n” is the Montana coefficient (Estorge et al., 1980) characteristic of the intense rainfall in the studied area (Boni et al., 2001). So that, in
the calibration process, the variability ranges of “n” in each area is fixed while “a” remains the only free (experimental) parameter.
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Based on landslide events mean triggering rainfall values distribution, different threshold were identified for each alpine and hilly environments.



Sa”OW Iandslide EWS:When?

Thresholds,
differentiated
by MC index
and
experimental
results, have
been linked to
each raingauge
according to
different
environments,
using Thyssen

polygons.




Shallow landslide EWS: When?

Moreover, for each Tyssen poligon the T, condition (soil moisture derived from previous 24-
hours rainfall or snowmelting accumulation) is calculated by a distributed hydrological model
every day.

Precipitation
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I Liquid phase I
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Thermometers Infiltration




ShaIIw landslide ES: Where & When

By the intersection between Thyssen polygons and susceptibility map, an EWS
hazard zonation for shallow landslide activations was obtained. So, when a
threshold is exceeded in a polygon, we get also a direct information about the
likely number of triggers per km2. So, we answered also to the question "How

many?"!




Shallow landslide EWS: Where & \When

A dedicated tool “Shallow landslides Movements § [‘aj‘"fa:_‘?“;e"”m"‘]
Announced through Rainfall Thresholds” (SMART) is set reshotd [ 10-50
up to elaborate rainfall time series for each rain gauge in %fg;f;
real-time. I 150 - 200

2 P 200 - 250

: ! B 250 - 300
After setting a threshold of interest, SMART is able to |G =22235°
identify the complete set of critical rainfall events for each oo

gauge station (i.e. cumulative rainfall is greater than the
threshold value for the specific duration).

The tool identifies the beginning of a rainfall event,
defined as 12 hours of continuous rainfall, with
interruptions not exceeding 6 hours.
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How to communicate?’

BOLLETTINO a2 E
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SCENARIO ATTUALE E SCENARIO PREVISTO

The SMART warning bulletin is released every day.
The extraordinary emissions according to the alert
degree.

AULAZIONE DEI

Real-time and forecasted scenarios are summarized
using a simple and immediate layout.
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Bulletins are diffused by our institutional website:
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Debris flow Early Warning System
DEFENSE

DEbris Flows triggEred by storms - Nowcasting SystEm
"When?” and "Where?” are no longer

sufficient...
Another new fundamental question is:

[ |
What?




Debris flow EWS: What?

The geological model is based on the dominant lithofacies of the catchment bedrock that affects the characteristics and
behavior of torrential processes and architecture of alluvial fans (Tiranti et al., 2008; 2014, Tiranti and Deangeli 2015, Tiranti et
al., 2016). Catchments were classified into three main classes of catchment lithology through the Clay Weathering Index (CWI)
which indicates the propensity of lithofacies to weather into clay or other fine minerals with clay-like rheology behavior (e.g.
other phyllosilicate groups):

Excellent Clay-Maker (ECM) catchments are mainly formed by rocks having a very high
propensity to weather into clay or clay-like minerals (e.g. thinning-foliated and
phyllosilicates-rich metamorphic rocks);

Good Clay-Maker (GCM) catchments are mainly formed by rocks having a good propensity to
weather into clayey silt and clay (e.g. massive carbonate rocks);

Bad Clay-Maker (BCM) catchments are mainly formed by rocks having a bad propensity to
weather into clay or clay-like minerals (e.g. massive crystalline rocks).



Debris flow EWS: What?

The characterization of rocks and derived shallow deposits is useful for the identification and evaluation of potential source
areas. What is evident is a different amount of unconsolidated material production, both in terms of abundance and grain-size,
depending on the catchment lithologies. The unconsolidated material in the catchment area affects the depositional style of

debris flows and is directly linked to the rheology. Depositional styles are easily identifiable for each catchment class through
direct field observations in channel beds and in alluvial fan areas.

Outcropping bedrock fraction vs process ROI

40

Qutcropping bedrock [%]

Outcropping bedrock [%s]

the torrential process type (water,
hyperconcentrated and debris flow) is
driven by the percentage of
outcropping bedrock in a catchment.

Each CWI class identify different

: . _ depositional style
sedimentological characteristics P Y



Debris flow EWS: What?

CWI classes also describe the alluvial fans characteristics: size, shape, morphology and grain-
size distribution.

ECM GCM BCM
areafan/areabasin=5%  areafan/areabasin = 20% areafan/areabasin = 5%

characterized by lobe-shaped
geometry and high slopes
particularly at the apex of the fan.

characterized by moderate characterized by reqular geometry
slope and an irreqular geometry. (fan-shaped) and gentle slope.



Debris flow EWS: Where & When?

Answer to “Where?” is simple... But, to solve the problem “"When?” 2,100 basins and all the recorded events from 1728 to 2015
were analyzed.

Toce river and
Maggicre Lake
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Debris flow EWS: When?

From historical debris flow events results clearly that debris flows are mainly initiated by short and intense rainfall (rainstorm or
high intensity peaks during a prolonged rainfall event).

Rain gauge networks often miss localized and intense
precipitation events (Duncan et al., 1993), while weather radars &
allow the monitoring of rainfall over large areas, with a high
spatial and temporal resolution, if the radar echo exceeds the F*
minimum detectable signal. |

In order to identify convective precipitation cells, a storm §
identification and tracking algorithm was employed. The storm-
tracking algorithm detects convective events with a maximum
reflectivity larger than a given threshold (40 dBZ) and tracks }

them in space and time.

Every five minutes DEFENSE analyses weather radar and
satellite data, localizing potential damaging storms, and it
produces a georeferred dataset with relevant storms
parameters (i.e. position, displacement velocity, severity). The
expected ground effects of the storms are evaluated
performing geographical operations by a spatial database and
GIS functions.

Severity Storm Index

1
2
3
4
5

Storm
ellipsis

32 36 36 60 =64



Debris flow EWS: What, Where & When

DEFENSE identifies, among Py i e
all storm, severe storms (i.e. [Eraasi™ S |
storm severity index greater |

than three), whose area is

over or it will impact in the

following 60 minutes upon

CWI pre-classified basins;

automatic warnings for
debris-flow occurrence are
then produced (e-mails and
SMSs to experts and
stakeholders). % AR TS s

Drebris Fiow - DEFENSE
DEFENSE (DEls Flows trhiggEred by storms - Nowcasting SystEm]) £ Arpa Pismorite 2011 Pioggia Istanianea




Highlights

SMART works using rainfall values recorded by raingauges network and
traditional weather forecasting (weather radar data in a near future);

SMART’s warnig is disseminated as a bullettin by institutional WebSite everyday
(public);

DEFENSE works using only the observations by weather radars in real-time and
In nowcasting;

DEFENSE’s warnig is disseminated by e-mail and SMS messages when a critical
situation is identified (stakeolders and experts only).



Thanks for your
attention!
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